
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences 
© 2021, released under CC BY-SA

CS 4530 & CS 5500
Software Engineering
Lecture 9.4: Engineering Secure Software

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Recognize the causes of and common mitigations for common
vulnerabilities in web applications

• Utilize static analysis tools to identify common weaknesses in code

OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

• Code injection (various forms - SQL/command line/XSS/XML/deserialization)

• Broken authentication + access control

• Weakly protected sensitive data

• Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/

Code Injection Example
OWASP A1:2017-Injection

String query = "SELECT * FROM accounts WHERE
 name='" + request.getParameter(“name") + "'";

Parameter
name Constructed Query Effect

Alice SELECT * FROM accounts WHERE
name=‘Alice’; Select a single account

Alice O’Neal SELECT * FROM accounts WHERE
name=‘Alice O’Neal’; SQL Error

5’ OR ‘1’=‘1 SELECT * FROM accounts WHERE
name=‘5’ OR ‘1’=‘1’; Select all accounts

THIS IS AN ATTACK

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

Code Injection Example
XKCD #327

Code Injection Example
Cross-site scripting (XSS)

Trusted Server
Malicious
JavaScript
Response

Code Injection Example
Cross-site scripting (XSS)

Trusted Server

app.get('/transcripts/:id', (req, res) => {
 // req.params to get components of the path
 const {id} = req.params;
 const theTranscript = db.getTranscript(parseInt(id));
 if (theTranscript === undefined) {
 res.status(404).send(`No student with id = ${id}`);
 }
 {
 res.status(200).send(theTranscript);
 }
});

/transcripts/4

Code Injection Example
Cross-site scripting (XSS)

Trusted Server
/transcripts/abcd

app.get('/transcripts/:id', (req, res) => {
 // req.params to get components of the path
 const {id} = req.params;
 const theTranscript = db.getTranscript(parseInt(id));
 if (theTranscript === undefined) {
 res.status(404).send(`No student with id = ${id}`);
 }
 {
 res.status(200).send(theTranscript);
 }
});

Code Injection Example
Cross-site scripting (XSS)

Trusted Server
/transcripts/%3Ch1%3e…

app.get('/transcripts/:id', (req, res) => {
 // req.params to get components of the path
 const {id} = req.params;
 const theTranscript = db.getTranscript(parseInt(id));
 if (theTranscript === undefined) {
 res.status(404).send(`No student with id = ${id}`);
 }
 {
 res.status(200).send(theTranscript);
 }
});

<h1>Congratulations!</h1>
 You are the 1000th visitor to the
transcript site! You have been selected
to receive a free iPad. To claim your
prize <a href='https://www.youtube.com/
watch?v=DLzxrzFCyOs'>click here!
 <script language=“javascript”>
document.getRootNode().body.innerHTML=
'<h1>Congratulations!</h1>You are the
1000th visitor to the transcript site!
You have been selected to receive a
free iPad. To claim your prize <a
href="https://www.youtube.com/watch?
v=DLzxrzFCyOs">click here!’;
alert('You are a winner!’);
</script>

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https://www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E

Code Injection Example
Java code injection in Apache Struts (@Equifax)

CVE-2017-5638 Detail
Current Description
The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-

message generation during file-upload attempts, which allows remote attackers to execute arbitrary commands via a
crafted Content-Type, Content-Disposition, or Content-Length HTTP header, as exploited in the
wild in March 2017 with a Content-Type header containing a #cmd= string.

Cross-site Scripting
How to fix it?

• Sanitize user-controlled inputs (remove
HTML)

• Use tools like LGTM to detect vulnerable
data flows

• Use middleware that side-steps the
problem (e.g. return data as JSON, client
puts that data into React component)

Detecting Weaknesses in Apps with Static Analysis
LGTM + CodeQL

https://lgtm.com

https://lgtm.com

OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

• Code injection (various forms - SQL/command line/XSS/XML/deserialization)

• Broken authentication + access control

• Weakly protected sensitive data

• Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/

Broken Authentication + Access Control
How to fix it?

• Implement multi-factor authentication

• Implement weak-password checks

• Apply per-record access control

• Harden account creation, password reset
pathways

• The software engineering approach: rely on a
trusted component

https://auth0.com

Auth0

https://auth0.com

Broken Authentication + Access Control
Specifically: CWE-798: Use of Hard-coded Credentials

https://cwe.mitre.org/data/definitions/798.html

Broken Authentication + Access Control
CWE-798: Use of Hard-coded Credentials: Study of 1.1m Android Apps

“A Measurement Study of Google Play,” Viennot et al, SIGMETRICS ‘14

https://cwe.mitre.org/data/definitions/798.html

Hardcoded Credentials: Automated Checker
GitGuardian (Launched in 2017)

https://www.gitguardian.com

OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

• Code injection (various forms - SQL/command line/XSS/XML/deserialization)

• Broken authentication + access control

• Weakly protected sensitive data

• Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/

Weakly Protected Sensitive Data
How to fix it?

• Classify your data by sensitivity

• Encrypt sensitive data - in transit and at rest

• Make a plan for data controls, stick to it

• Software engineering fix: can we avoid storing sensitive data?

• Payment processors: Stripe, Square, etc

OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

• Code injection (various forms - SQL/command line/XSS/XML/deserialization)

• Broken authentication + access control

• Weakly protected sensitive data

• Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/

Using Components with Known Vulnerabilties
How to fix it?

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Recognize the causes of and common mitigations for common
vulnerabilities in web applications

• Utilize static analysis tools to identify common weaknesses in code

This work is licensed under a Creative Commons
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

