CS 4530 & CS 5500
Software Engineering

Lecture 9.4: Engineering Secure Software

Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences
© 2021, released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Recognize the causes of and common mitigations for common
vulnerabilities in web applications

o Utilize static analysis tools to identify common weaknesses in code

OWASP Top Security Risks

All 10: https://owasp.org/www-project-top-ten/

 Code injection (various forms - SQL/command line/XSS/XML/deserialization)
 Broken authentication + access control
* Weakly protected sensitive data

* Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/

Code Injection Example
OWASP A1:2017-Injection

String query = "SELECT x FROM accounts WHERE
name='" + request.getParameter(“name") + "'";

Parameter

Constructed Query Effect
Nname

: SELECT %x FROM accounts WHERE
Alice

| Select a single account
name=‘Alice’: 9

Alice O'Neal SELECT % FROM accounts WHERE

name=‘Alice 0'Neal’; SQL Error

THIS IS AN ATTACK

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

Code Injection Example

XKCD #327

HI, THIS 1S

YOUR SON'S SCHOOL.

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%

!

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

—

~OH.YES LITTLE
ROBBY TARLES,
WE CALL HIM.

WELL, WE'VE LOST THIS

YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
¢ TOSANMIZE YOUR
DATARASE INPUTS.

Code Injection Example
Cross-site scripting (XSS)

Malicious
ﬁ ﬁ Javascript
Response

| NON & https://rest-example.covey.tov X +

| MON & https://rest-example.covey.tov X +

& C' @& rest-example.covey.town/trans... Yr W e :
<~ C' @ rest-example.covey.town/trans... Y& % e :
{"student":{"studentID":4, "studentName": "casey"}, "grades":
[{"course":"DemoClass","grade":100}]} C o '
ongratulations!

You are the 1000th visitor to the transcript site! You have been selected to
receive a free iPad. To claim your prize click here!

Code Injection Example

CrOSS—Site Scripting (XSS) app.get('/transcripts/:id', (req, res) => {

// reqg.params to get components of the path

const {id} = reqg.params;
const theTranscript = db.getTranscript(parseInt(id));
if (theTranscript === undefined) {
res.status(404).send(No student with id = ${id});
}
/transcrlpts/4 { :
res.status(200).send(theTranscript);
}
1)
00 & https://rest-example.covey.tov X +
| & C' @& rest-example.covey.town/trans... Yr W e :

j {"student":{"studentID":4, "studentName":"casey"}, "grades":
- [{"course":"DemoClass","grade":100}]}

Code Injection Example

Cross-site scripting (XSS)

/transcrlpts/abcd

® 0 & https://rest-example.covey.tov X

-+

< C & rest-example.covey.town/trans...

No student with 1d = abcd

app.get('/transcripts/:id', (req, res) => {

})i

// reqg.params to get components of the path

const {id} = reqg.params;
const theTranscript = db.getTranscript(parseInt(id));
if (theTranscript === undefined) {

res.status(404).send(No student with id = ${id});
}

{
res.status(200).send(theTranscript);

}

4

* O

Code Injection Example

Cross-site scripting (XSS)

/transcrlpts/ %3Ch1%3e..

00 C https://rest-example.covey.tov X

+

< X @ rest-example.covey.town/trans...

rest-example.covey.town says

You are a winner!

Waiting for rest-example....

* * O

const {id}
const theTranscript
if (theTranscript

res.status(404).

})i

® O @ https://rest-example.covey.tov X +

<& C @& rest-example.covey.town/trans... Y& % e

Congratulations!

You are the 1000th visitor to the transcript site! You have been selected to
receive a free iPad. To claim your prize click here!

res.status (200

app.get('/transcripts/:id', (req, res) => {
// reqg.params to get components of the path
reg.params;

db.getTranscript(parseInt(id));
undefined) {
(No student with id = ${id});

heTranscript);

<hl>Congratulations!</hl>
You are the 1000th visitor to the
transcript site! You have been selected
to receive a free iPad. To claim your
prize <a href='https://www.youtube.com/
watch?v=DLzxrzFCyOs '>click herel!
<script language=“javascript”>
document.getRootNode() .body.innerHTML=
'<hl>Congratulations!</h1l>You are the
1000th visitor to the transcript site!
You have been selected to receive a
free iPad. To claim your prize <a
href="https://www.youtube.com/watch?
v=DLzxrzFCyOs">click here!';
alert('You are a winner!’);
</script>

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https://www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E

Code Injection Example

Java code injection in Apache Struts (@Equifax)

EQU'FAX ' @ English 5 Return to equifax.com»

2017 Cybersecurity Incident &
Important Consumer Ipfaea

NEWS

Equifax Says Cybersecurity Breach Has Cost

o iy ~1-4 Billion

000
E—

CVE-2017-5638 Detail
Current Description

The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-
message generation during file-upload attempts, which allows remote attackers to @Xecute arbitrary commands via a

crafted Content-Type, Content-Disposition, or Content-Length HTTP header, as exploited in the

wild in March 2017 with a Content-Type header containing a #cmd= string.

Cross-site Scripting

How to fix it?

—_—
1 path available

o Sanitize user-controlled INnputs (remove | reecedcross-ite seriping
HTML)

2 steps in server.ts

» Usetools like LGTM to detect vulnerable =
data flows ol B

65 console.log(Handling GET /transcripts/:id id = ${id}),
66 const theTranscript = db.getTranscript(parseInt(id));

* Use middleware that side-steps the ML
problem (e.g. return data as JSON, client strz:n
puts that data into React component)

1 1-65

66 const theTranscript = db.getTranscript(parseInt(id));
67 if (theTranscript === undefined) {
68 res.status(404).send(No student with id = ${id});

Cross-site scripting vulnerability due to user -provided value.

69 } else {
70 res.status(200).send(theTranscript);

l 71-169

Detecting Weaknesses in Apps with Static Analysis

LGTM + CodeQL

e e [[J < > 0O 0 & lgtm.com C

‘@ Igtm Help Queryconsole Projectlists My alerts

Alerts (16 History Compare Integrations

@1 Jonathan Bell

Queries

By default, only the files that also appear in the Alerts tab are listed here.

Files classified as non-standard, such as test code or generated files, are shown only when you check "Show excluded files".

Clear text storage of sensitive information
Sensitive information stored without encryption or hashing can expose it to an attacker.

Alert filters Clear-text logging of sensitive information
Logging sensitive information without encryption or hashing can expose it to an attacker.
No filter selected B Export alerts ¥
Client-side cross-site scripting
- Writing user input directly to the DOM allows for a cross-site scripting vulnerability.
Severity Query Tag] Show excluded files (?) Show heatmap

Source root/

Name Q Alerts

B public

BB src

package.json

Client-side URL redirect
Client-side URL redirection based on unvalidated user input may cause redirection to malicious
web sites.

Code injection
Interpreting unsanitized user input as code allows a malicious user arbitrary code execution.

Download of sensitive file through insecure connection
Downloading executables and other sensitive files over an insecure connection opens up for

Hnesofcode potential man-in-the-middle attacks.

756

_i 1€S O f coO l e

https://Igtm.com

1es Of (\’\:_lj"

https://lgtm.com

OWASP Top Security Risks

All 10: https://owasp.org/www-project-top-ten/

 Code injection (various forms - SQL/command line/XSS/XML/deserialization)
 Broken authentication + access control
* Weakly protected sensitive data

* Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/

Broken Authentication + Access Control

How to fix it?

e |mplement multi-factor authentication

* |mplement weak-password checks

AuthO

* Apply per-record access control

 Harden account creation, password reset
pathways

* The software engineering approach: rely on a
trusted component

https://auth0.com

https://auth0.com

Broken Authentication + Access Control
Specifically: CWE-798: Use of Hard-coded Credentials

<SCRIPT>

function passWord() {

var testV = 1;

var passl = prompt('Please Enter Your Password',' ');
while (testV < 3) {

if ('passl)

history.go(-1);

if (passl.toLowerCase() == "letmein") {

alert('You Got it Right!’);
window.open('protectpage.html’);

break;

}
testV+=1;

var passl =

prompt('Access Denied - Password Incorrect, Please Try Again.,'Password’);
}
if (passl.toLowerCase()!="password" & testV ==3)
history.go(-1);

return " "

}
</SCRIPT>

<CENTER>

<FORM>

<input type="button" value="Enter Protected Area" onClick="passWord()">
</FORM>

</CENTER>

https://cwe.mitre.org/data/definitions/798.html

Broken Authentication + Access Control
CWE-798: Use of Hard-coded Credentials: Study of 1.1m Android Apps

Amazon | Facebook | Twitter | Bitly | Flickr | Foursquare | Google | LinkedIn | Titanium
Total candidates 1,241 1,477 28,235 3,132 | 159 326 414 1,434 1,914
Unique candidates | 308 460 6,228 616 89 177 225 181 1,783
Unique % valid 93.5% 71.7% 95.2% 88.8% | 100% |97.7% 96.0% | 97.2% 99.8%

Table 5: Credentials statistics from June 22, 2013 and validated on November 11, 2013. A credential may consist of an ID
token and secret authentication token.

‘ Playdrone

AKIA*

10 files per page ;l

416 Files / 8.98 MB (ES took 0.131s) «— Previous 1723456789 ... 41 42 Next —

Android Package Path Line
AppConst.java public static final String AMAZON KEY ID = "AKIA
SongManager.java BasicAWSCredentials localBasicAWSCredentials = new BasicAWSCredentials("AKIZ ", "zc3/1lb
shoutcast.java ("AWSAccessKeyId=AKIA)).append("AssociateTag=mariuliorda
20&") .toString())).append("ItemPage=1&").toString())).append("Keywords=").append(str2).append("&").to5t
Shoutcast.java ("AWSAccessKeyId=AKIA ")) .append("AssociateTag=mariulorda

20&") .toString())).append("ItemPage=1&").toString())).append("Keywords=").append(str2).append("&").toS5t

FluDataReaderSimpleDBImpl.java final String accessKeyId = "AKIA

FluDataReaderSimpleDBImpl.java private SimpleDB simpleDBClient = new SimpleDB("AKIA ", "25F1vKgS5ilbLnmBrSqGwB0Dwgol@baN

T'rigonometry Definition.java 8akIaBbl/2mlpdLWyqTbNPFkeNN533CAvtug4dRLPDoS5ZtckU/JFBRAVO1/HXxGSESjplj3skcexk75t0gUlr/sIX18nV+TxPMHEBLAGO
/BK1BIFB+AT4KyZtpkKPz9+cVLB]IDAAK]Rk] jaKAAAAAAAAAAAAUK4UBRWY2Z06hoeHh5XP5zUONKRXXnmFIwUQA4cPHOah04fU3d1
ohiapp13.java String strl = work@3(paramString, "", "AKIAJ "ecs.amazonaws.jp", "AtxeExf]7HIbQhDLlbdmc
AmazonScoreRegistry java protected AmazonSimpleDBClient sdbClient = new AmazonSimpleDBClient(new BasicAWSCredentials("AKIA
signedRequestsHelper.java private String awsAccessKeyId = "AKIA
signedRequestsHelper.java private String awsAccessKeyId = "AKIA

— Previous 123456789...41 42 Next —

Figure 9: PLAYDRONE’s web interface to search decompiled sources showing Amazon Web Service tokens found in 130 ms.

“A Measurement Study of Google Play,” Viennot et al, SIGMETRICS ‘14

https://cwe.mitre.org/data/definitions/798.html

Hardcoded Credentials: Automated Checker
GitGuardian (Launched in 2017)

o SIGN UP FOR FREE
Internal Monitoring

@Gitﬁuardian Products v Pricing Resources v Get ademo]

Activity

PUSH EVENTS PU EVENT! COMMIT Table of activity
| 77 |2 1153

Automated
secrets detection
& remediation

Monitor public or private source code, and other
data sources as well. Detect APl keys, database
credentials, certificates, ...

BENesiXX

Public events

Schedule a demo

David Herault

......

............

£ alaolia 3 dachlane ¥ DATADOG S AENEQVE \WVAVESTON E

https://www.gitguardian.com

OWASP Top Security Risks

All 10: https://owasp.org/www-project-top-ten/

 Code injection (various forms - SQL/command line/XSS/XML/deserialization)
 Broken authentication + access control
* Weakly protected sensitive data

* Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/

Weakly Protected Sensitive Data

How to fix it?

» Classify your data by sensitivity

* Encrypt sensitive data - in transit and at rest

« Make a plan for data controls, stick to it

o Software engineering fix: can we avoid storing sensitive data?

 Payment processors: Stripe, Square, etc

OWASP Top Security Risks

All 10: https://owasp.org/www-project-top-ten/

 Code injection (various forms - SQL/command line/XSS/XML/deserialization)
 Broken authentication + access control
* Weakly protected sensitive data

* Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/

Using Components with Known Vulnerabilties
How to fix it?

Bump junit from 412 to 4.13.1 #155

IV e jon-bell merged 1 commit into master from dependabot/maven/junit-junit-4.13.1 (2 22 days ago

() This automated pull request fixes a security vulnerability
Only users with access to Dependabot alerts can see this message. Learn more about Dependabot security updates, opt out, or give us feedback.

Vulnerabiity Vulnerab- &y You Find It You Fix It L) Conversation 0 -0- Commits 1 L Checks 2 Files changed 1
Introduced Dizcovered ' | .
» e —— » . .
v « dependabot bot commented on behalf of github on Oct 13 Contributor () «--

Bumps junit from 4.12 to 4.13.1.

» Release notes

é

Exgloits Hacwers
Published Attack

» Commits

&3 compatibility 193%

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually
by commenting @dependabot rebase .

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Recognize the causes of and common mitigations for common
vulnerabilities in web applications

o Utilize static analysis tools to identify common weaknesses in code

This work is licensed under a Creative Commons
Attribution-ShareAlike license

* This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

e You are free to:

e Share — copy and redistribute the material in any medium or format
 Adapt — remix, transform, and build upon the material
e for any purpose, even commercially.

* Under the following terms:

e Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

e ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

 No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

