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Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Recognize the causes of and common mitigations for common 
vulnerabilities in web applications


• Utilize static analysis tools to identify common weaknesses in code



OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

• Code injection (various forms - SQL/command line/XSS/XML/deserialization)


• Broken authentication + access control


• Weakly protected sensitive data


• Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/


Code Injection Example
OWASP A1:2017-Injection

String query = "SELECT * FROM accounts WHERE 
       name='" + request.getParameter(“name") + "'";

Parameter 
name Constructed Query Effect

Alice SELECT * FROM accounts WHERE 
name=‘Alice’; Select a single account

Alice O’Neal SELECT * FROM accounts WHERE 
name=‘Alice O’Neal’; SQL Error

5’ OR ‘1’=‘1 SELECT * FROM accounts WHERE 
name=‘5’ OR ‘1’=‘1’; Select all accounts

THIS IS AN ATTACK

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection


Code Injection Example
XKCD #327



Code Injection Example
Cross-site scripting (XSS)

Trusted Server
Malicious 
JavaScript 
Response



Code Injection Example
Cross-site scripting (XSS)

Trusted Server

app.get('/transcripts/:id', (req, res) => {
  // req.params to get components of the path
  const {id} = req.params;
  const theTranscript = db.getTranscript(parseInt(id));
  if (theTranscript === undefined) {
    res.status(404).send(`No student with id = ${id}`);
  }
  {
    res.status(200).send(theTranscript);
  }
});

/transcripts/4



Code Injection Example
Cross-site scripting (XSS)

Trusted Server
/transcripts/abcd

app.get('/transcripts/:id', (req, res) => {
  // req.params to get components of the path
  const {id} = req.params;
  const theTranscript = db.getTranscript(parseInt(id));
  if (theTranscript === undefined) {
    res.status(404).send(`No student with id = ${id}`);
  }
  {
    res.status(200).send(theTranscript);
  }
});



Code Injection Example
Cross-site scripting (XSS)

Trusted Server
/transcripts/%3Ch1%3e…

app.get('/transcripts/:id', (req, res) => {
  // req.params to get components of the path
  const {id} = req.params;
  const theTranscript = db.getTranscript(parseInt(id));
  if (theTranscript === undefined) {
    res.status(404).send(`No student with id = ${id}`);
  }
  {
    res.status(200).send(theTranscript);
  }
});

<h1>Congratulations!</h1>
  You are the 1000th visitor to the 
transcript site! You have been selected 
to receive a free iPad. To claim your 
prize <a href='https://www.youtube.com/
watch?v=DLzxrzFCyOs'>click here!</a>
  <script language=“javascript”>
document.getRootNode().body.innerHTML=
'<h1>Congratulations!</h1>You are the 
1000th visitor to the transcript site! 
You have been selected to receive a 
free iPad. To claim your prize <a 
href="https://www.youtube.com/watch?
v=DLzxrzFCyOs">click here!</a>’;
alert('You are a winner!’);
</script>

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https://www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E


Code Injection Example
Java code injection in Apache Struts (@Equifax)

CVE-2017-5638 Detail 
Current Description 
The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-

message generation during file-upload attempts, which allows remote attackers to execute arbitrary commands via a 
crafted Content-Type, Content-Disposition, or Content-Length HTTP header, as exploited in the 
wild in March 2017 with a Content-Type header containing a #cmd= string. 



Cross-site Scripting
How to fix it?

• Sanitize user-controlled inputs (remove 
HTML)


• Use tools like LGTM to detect vulnerable 
data flows


• Use middleware that side-steps the 
problem (e.g. return data as JSON, client 
puts that data into React component)



Detecting Weaknesses in Apps with Static Analysis
LGTM + CodeQL

https://lgtm.com

https://lgtm.com


OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

• Code injection (various forms - SQL/command line/XSS/XML/deserialization)


• Broken authentication + access control


• Weakly protected sensitive data


• Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/


Broken Authentication + Access Control
How to fix it?

• Implement multi-factor authentication


• Implement weak-password checks


• Apply per-record access control


• Harden account creation, password reset 
pathways


• The software engineering approach: rely on a 
trusted component

https://auth0.com

Auth0

https://auth0.com


Broken Authentication + Access Control
Specifically: CWE-798: Use of Hard-coded Credentials

https://cwe.mitre.org/data/definitions/798.html


Broken Authentication + Access Control
CWE-798: Use of Hard-coded Credentials: Study of 1.1m Android Apps

“A Measurement Study of Google Play,” Viennot et al, SIGMETRICS ‘14

https://cwe.mitre.org/data/definitions/798.html


Hardcoded Credentials: Automated Checker
GitGuardian (Launched in 2017)

https://www.gitguardian.com


OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

• Code injection (various forms - SQL/command line/XSS/XML/deserialization)


• Broken authentication + access control


• Weakly protected sensitive data


• Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/


Weakly Protected Sensitive Data
How to fix it?

• Classify your data by sensitivity


• Encrypt sensitive data - in transit and at rest


• Make a plan for data controls, stick to it


• Software engineering fix: can we avoid storing sensitive data?


• Payment processors: Stripe, Square, etc



OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

• Code injection (various forms - SQL/command line/XSS/XML/deserialization)


• Broken authentication + access control


• Weakly protected sensitive data


• Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/


Using Components with Known Vulnerabilties
How to fix it?



Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Recognize the causes of and common mitigations for common 
vulnerabilities in web applications


• Utilize static analysis tools to identify common weaknesses in code
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